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We give sufficient conditions on a radial basis function that imply that the
multi-integer translates of this radial function satisfy a local stability estimate in the
uniform norm. " 1993 Academic Press, Inc.

In this note, we study the question of local stability of functions from
radial basis function spaces. Specifically, let ¢: R, — R be a continuous
“radial basis function” and denote the composite function ¢<|-||: R* > R
{where ||| is the Euclidean norm) also by ¢. Approximations from spaces
generated by translates of this function ¢ have been subject to a lively
investigation in the recent past (see, e.g., Powell [2] for a comprehensive
survey), and here, interest has frequently been focused on integer translates
of ¢. While one of the main interests in the literature has been a study
of the existence and uniqueness of interpolants from spaces spanned by
translates of radial basis functions, and the approximational efficacy
thereof (see, for instance, Buhmann [1]), our goal in this note is to give
sufficient conditions on ¢ that ensure that translates of ¢ along the
multi-integers satisfy the local stability estimate

2 didlx—))

A

ld)| < C sup forall [eZ" (1)

x-1{eK

* Research of this author supported by NSF under Grant DMS 89-0-01345 and ARO
under Grant DAAL 03-90-G-0091.

36
0021-9045/93 $5.00

Copyright ¢ 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.



TRANSLATES OF RADIAL BASIS FUNCTIONS 37

Here, K is a compact neighbourhood about zero, C is a positive constant
that does not depend on / or on the d; but does depend on K, and the
{d;},. 7 are required to be such that

Y ldid(x—j) < oo forall xeR" (2)
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We note that the estimate (1) provides, in particular, a new proof of
the fact that the coefficients of some of the fundamental functions for inter-
polation which were studied in Buhmann [1] decay at lcast as fast as the
fundamental functions themselves. We also note that, if |¢(x)| decays fast
enough at infinity for
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to be finite for all sequences {d,} that are such that
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then (1) implies
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This is the standard stability estimate in the uniform norm.

We have the following result, which applies, for instance, when ¢(r) is
any odd power of r (which is a choice frequently discussed in the literature)
and the dimension of the underlying space is odd too. Odd powers of the
Euclidean norm are fundamental solutions of iterated Laplacian operators,
which is a highly relevant fact in the analysis of radial basis function
approximation methods (see, for instance, Powell [2]}, but this is only
true when the spatial dimension is odd, since in even dimensions
expressions of the form r** logr are the fundamental solutions of the
iterated Laplace operators.

THEOREM. Suppose ¢: R, — R is not identically zero and has the form

(m—1)/2
gry)= 3% ar" ¥ rz0,
1=0

where m is an odd positive integer. Let s be positive and odd too. Then the
stability estimate (1) holds.

Proof. We remark first that in the one-dimensional case, any linear
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combination of integer translates ¢(]- —j|) for such a ¢ as is required in the
statement of the theorem, is a piecewise polynomial, so the univariate
spline theory (see, e.g., Schumaker [4]) provides the desired result. So let
s> 3. The salient ingredient to the proof is identilying functionals that are
dual to our radial function and its translates, in an integral representation,
where the range of integration is a compact set, which will immediately
lead to the estimate (1). To this end, let us assume without loss
of generality that the ball about zero of radius 1/2 is contained in K. We
note the identity which is useful in obtaining the aforementioned dual
functionals
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where H, and {b, ;} are real constants, and H,>0, b, ,=b,>0, ie, the
b, o do not depend on / and are positive. Before we prove (3), we will first
show how (1} is derived from (3). Choose numbers {r.},., =R,
{ri}ees= (0, 1/2), where J= Z, is a finite subset, such that the inequality
in

(m—1)2

Y tk_[ p(x)dx= Y a Y tkf (x|~ % dx
ket Wxl = rg 1=0 ked hxl| =ri
2n.\m“2 (m - 1)/2 : ,
= a ery T M dx £ $(0) =0
1(3s) Z:o [k§e;.l o
holds and such that it is true that
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Such numbers exist by the linear independence of the powers r/** ' if
Jo Z _ is large enough. If we now define the linear functional
L f=fO =% 6|  fx)ax,
kel lxlh = rk
then for some nonzero constant C, we have, by (3) and (4),
L| T a3 dreoc-in=ca, (5)
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where it is admissible to take the linear functional inside the sum because
of the summability requirement (2). We note that (5) means that L and its
integer translates are dual functionals to the integer translates of ¢.

The estimate (1) follows from the fact that we have identified an integral
representation for the functional that is dual to ¢ and its translates.
Specifically, we estimate
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where C is a positive constant. Now, (5) and (6) imply (1).

It remains to establish the identity (3). This is a matter of evaluating the
integral of the power of a Euclidean distance function over a sphere and in
order to do this we use the following approach. We observe that with
n := | v|, the left-hand side of (3) is the same as
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by changing from Cartesian to polar coordinates. Here, H_ is a positive
constant. Making a change of variables and employing the generating
function for Legendre polynomials P;, which we can find in Rainville [3,
p. 157], we conclude that the integral in (7) is, for r < | y|,
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where [m/2] is the largest integer <m/2 and where we have made use of
the orthogonality of the Legendre polynomials. By expanding the term in
braces that occurs inside the integral and by making use of the
orthogonality once more, we obtain that the above expression is the same
as

[m2] -1+ 1 ([i71/2]—[+ 1) x+[ms’2]z:[ 2k (r>/+l [mi2]— &k
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Here, the requirement that j+/— [m/2] —k be odd comes from the fact
that symmetry implies that

1
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if j+/— [m/2] — k is even. Hence the powers of r/ that occur on the right-
hand side of (7) when the integral therein is evaluated, are all the even
numbers from 0 up to s+ m — 2/ —2. Thus, combining (7) and (8) gives
(3), and we observe that

1
bro=bo=| (=) x>0

The theorem is proved.

We remark that this theorem is a generalization of a theorem due to
Powell (1989, private communication) that proves stability for ¢(r)=r
when s=3. Further, the authors thank A. Iserles for pointing out the
usefulness of Legendre polynomials in the above computations. They also
thank the two referees for several thoughtful comments.
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